
Executing Formal Semantics with the K Tool ?

David Lazar1, Andrei Arusoaie2, Traian Florin S, erbănut,ă1,2, Chucky Ellison1,
Radu Mereuta2, Dorel Lucanu2, and Grigore Ros,u1,2

1 University of Illinois at Urbana-Champaign
{lazar6,tserban2,celliso2,grosu}@illinois.edu

2 University Alexandru Ioan Cuza of Ias, i
{andrei.arusoaie,traian.serbanuta,radu.mereuta,dlucanu}@info.uaic.ro

Abstract. This paper describes the K tool, a system for formally defining
programming languages. Formal definitions created using the K tool
automatically yield an interpreter for the language, as well as program
analysis tools such as a state-space explorer. The modularity of K and the
design of the tool allow one semantics to be used for several applications.

1 Introduction

Programming languages are the key link between computers and the software
that runs on them. While syntax is typically formally defined for almost any
programming language, semantics is most often given in natural language, and
only rarely using mathematical language. However, without a formal semantics,
it is impossible to rigorously reason about programs in that language. More-
over, a formal definition of a language is a specification offering its users and
implementers a solid basis for agreeing on the meaning of programs. Unfor-
tunately, tools for creating and working with formal definitions are poor and
unfriendly, causing language designers to prefer writing reference manuals or
reference implementations over formal definitions.

This paper presents a tool that makes it easy to write formal definitions for
large languages and use them for analysis and verification. This tool, known as
the K tool, is an executable implementation of the K framework [2], a formal
specification language that is simultaneously expressive, modular, and analyzable.
We extend an earlier implementation [4] with a mechanism for guided state-space
search and an easy-to-use frontend that supports input and output. These key
features allow users to experiment with language design and specification by
means of testing and exhaustive non-deterministic behavior exploration.

Besides didactic and prototypical languages (such as System F and Agent),
the K tool has been used to completely formalize C and Scheme. Several other lan-
guages are currently being defined using the K tool, including Haskell, Javascript,
LLVM IR, and Python. The K tool has also been used in the development of
several analysis tools, including a new program verification tool using program
assertions based on matching logic, a model checking tool based on the CEGAR
cycle, and several runtime verification tools. References and links to these tools
and definitions can be found on the K tool website, http://k-framework.org.
? This work is supported by Contract 161/15.06.2010, SMISCSNR 602-12516 (DAK).

http://k-framework.org

2 The K Tool: Basics

K definitions of programming languages can be written in machine-readable
ASCII. The K tool provides facilities to manipulate such definitions, including
typesetting them into their LATEX mathematical representation, and generating
execution and analysis tools. For example, Figure 1 gives the definition of a
simple calculator language with variables, input, and output. We assume this
definition is saved in a file called exp.k for the following examples.

module EXP
configuration
〈k〉 $PGM:K 〈/k〉
〈state〉 $STATE:Map 〈/state〉
〈streams〉
〈in stream="stdin"〉 .List 〈/in〉
〈out stream="stdout"〉 .List 〈/out〉
〈/streams〉

syntax KResult ::= Int

syntax K ::= K + K [strict]
| K / K [strict]

rule I1:Int + I2:Int => I1 +Int I2
rule I1:Int / I2:Int => I1 /Int I2
when I2 =/=Int 0

syntax K ::= Id

rule 〈k〉 X:Id => I ···〈/k〉
〈state〉··· X |−> I :Int ···〈/state〉

syntax K ::= read
| print K [strict]

rule 〈k〉 read => I ···〈/k〉
〈in〉 ListItem(I:Int) => .List ···〈/in〉

rule 〈k〉 print I :Int => I ···〈/k〉
〈out〉··· .List => ListItem(I) 〈/out〉

end module

MODULE EXP
CONFIGURATION〈

$PGM
〉
k

〈
$STATE

〉
state〈 〈 · 〉

in

〈 · 〉
out

〉
streams

SYNTAX KResult ::= Int

SYNTAX K ::= K + K [strict]
| K / K [strict]

RULE I1 + I2 ⇒ I1 +Int I2

RULE I1 / I2 ⇒ I1 ÷Int I2 when I2 6=Int 0

SYNTAX K ::= Id

RULE 〈 X

I

···〉k 〈··· X 7→ I ···〉state

SYNTAX K ::= read
| print K [strict]

RULE 〈read
I

···〉k 〈 I

·
···〉in

RULE 〈print I

I

···〉k 〈··· ·

I

〉out

END MODULE

Fig. 1. K definition of a calculator language with variables and I/O (left: ASCII source;
right: LATEX generated by the tool)

For execution and analysis purposes, the definitions are translated into Maude
rewrite theories. To obtain the rewrite theory associated to exp.k, we use the
kompile tool:

$ kompile exp.k
Compiled version written in exp-compiled.maude.

Once the definition is compiled, it can be used for interpretation and analysis.
Consider the program p1.exp:

print((read + read + read) / 3)

which reads three numbers and outputs their (truncated) mean. We can test this
program using the krun tool:

$ echo "3 14 15" | krun p1.exp
10

Notice the use of the operating system’s standard input/output streams.
Consider now the program p2.exp:

print(x + y)

which prints the sum of two externally defined variables x and y. If we forget to
pass in a value for x at the start of the program’s execution:

$ krun p2.exp --STATE="y |-> 2"
<k> x ∼> � + 2 ∼> print � </k>
<state> y |-> 2 </state>

the tool prints a configuration indicating that the execution got stuck. The con-
tents of the k cell tells us that the next computation to perform is the lookup of x.
Since x is not present in the state, the rule for variable lookup can not apply so the
execution is unable to proceed. If we instead type --STATE="y |-> 2 x |-> 3",
the tool prints the expected result of 5.

These examples demonstrate a new and important feature of the K tool: the
ability to associate cells in the configuration with data from the outside world. In
the definition above, the in and out cells are linked to standard input/output (via
the stream attribute) to achieve interactive I/O. This feature allows K definitions
to easily be tested for correctness using existing test suites and test frameworks.
Similarly, the state cell is initialized to the $STATE variable. This allows the
contents of the cell to be manipulated from the command-line, as in the previous
example. Incidentally, the k cell is also initialized to a variable, $PGM, which is
always mapped to the input program.

3 The K Tool: Analysis

The K tool is more than an interpreter front-end. Consider the program p3.exp:

print(print(read) + print(read))

The definition of EXP in Figure 1 says the value returned by print is the printed
number. Therefore, the program should read two numbers, print them, and then
print their sum. If we just execute the program as before, we see what we expect:

$ echo "3 14" | krun p3.exp
31417

However, the definition also says that the evaluation order of + (specified by the
strict annotation on its syntax) is nondeterministic. If we search for all possible
behaviors of p3.exp, we obtain two final configurations with differing out cells:
one where “3” is printed first and one where it is printed second:

$ echo "3 14" | krun p3.exp --search
Search results:

Solution 1, state 4:
<k> 17 </k>
<state> . </state>
<streams>
<in> "" </in>
<out> "31417" </out>

</streams>

Solution 2, state 9:
<k> 17 </k>
<state> . </state>
<streams>
<in> "" </in>
<out> "14317" </out>

</streams>

The state-space exploration functionality provided by krun --search can be
used to explore all possible thread interleavings of multi-threaded programs. It is
also used to find undefined behaviors in programs (particularly C programs).

In addition to the functionality shown in the examples above, the K tool gives
K definitions access to the exploration, analysis, and proving tools available for all
Maude rewrite theories [1], allowing programs written in the defined programming
languages to also be debugged, traced, and model checked, all without modifying
the definition.

4 Conclusion

The modularity and executability features provided by the K tool have made it
possible to completely define large languages like C. These features also make
it easy to experiment with language design in order to create new languages
and make modifications to existing languages. Regardless of the language being
defined, the same K definition that is tested by executing programs is used to do
program analysis and is used to do proofs about the language. One semantics is
used for all applications.

In this paper, we have shown only a subset of the features offered by the K
tool. To learn more about it, or to start developing a programming language,
download the K tool from our open source project page, http://k-framework.
googlecode.com, and start by reading the K Primer [3].

References

1. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Martí-Oliet, N., Talcott,
C.: All About Maude, A High-Performance Logical Framework, LNCS, vol. 4350.
Springer (2007)

2. Ros,u, G., S, erbănut,ă, T.F.: An overview of the K semantic framework. J. Logic and
Algebraic Programming 79(6), 397–434 (2010)

3. S, erbănut,ă, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Ros,u, G.: The K
primer (version 2.5). In: Proceedings of the 2nd Intl. K Wkshp. (K’11). Electronic
Notes in Theoretical Computer Science, vol. to appear (2012)

4. S, erbănut,ă, T.F., Ros,u, G.: K-Maude: A rewriting based tool for semantics of pro-
gramming languages. In: 8th Intl. Wkshp. on Rewriting Logic and its Applications
(WRLA’10). LNCS, vol. 6381, pp. 104–122 (2010)

http://k-framework.googlecode.com
http://k-framework.googlecode.com

	Executing Formal Semantics with the K Tool

